合成桁の限界状態設計法に関する研究紹介

2024/01/26

埼玉大学 奥井義昭

鋼橋の限界状態設計 (Limit State Design, LSD)

道路橋示方書…限界状態設計法?

限界状態1:弾性限界

- 限界状態2: 耐震, 鉛直荷重に対する限界状態としては定義?
- 限界状態3:座屈による終局限界

許容応力度設計法(ASD)

許容応力度 = Min[降伏強度, 座屈強度]/安全率

現行道示

限界状態設計法(LSD)ではなくて荷重抵抗係数法を用いた弾性設計基準 許容応力度設計法の実質的な違いは安全率のみ

海外の限界状態設計法 (AASHTO, Eurocode)

限界状態

- ・終局限界:最大耐力で照査
- 使用限界:降伏で照査(鋼橋の場合)

多段階設計法

	阳田小能	荷重係数		阳甲位
	四个小孩	死荷重	活荷重	四大シトロ
AASHTO	終局	1.25	1.75	最大耐力
	使用	1.00	1.30	降伏
Eurocode	終局	1.35	1.35	最大耐力
	使用	1.00	1.00	降伏

限界状態設計法(LSD)の優位性を出すためには

- 引張部材: 降伏強度=終局強度 → ASDと同じ
- ・座屈で決まる圧縮部材:座屈強度=終局強度 → ASDと同じ
- ・曲げ:降伏モーメント < 終局モーメント → LSDにメリット

道示次改定の方向性と発表の目的

次期道示改定

塑性設計,多段階設計法の導入 →塑性化も考慮した終局耐力算定必須

→たわみ制限以外の使用限界の明確化必須

この発表の目的

世界標準の意味での限界状態設計法のための研究の紹介 UFC合成桁も将来的には同じような研究開発が必要

合成桁の曲げ耐力

曲げ耐力実験

- yield stress of steel & concrete strength (N/mm²) -

	U.Flg	Web	L.Flg	σ _{ck}
1	307	314	307	40.7
2	307	314	305	39.0
3	307	329	307	40.9

実験結果:荷重一変位曲線

Vertical displacement $\delta v(mm)$

合成断面断面クラス:正曲げ時の断面判定

断面クラス(AASHTO LRFD)

- Compact $M_{max} > M_{pl}$ …座屈しない
- Noncompact $M_{pl} > M_{max} > M_y \cdots$ 弹塑性座屈
- Slender $M'_y > M_{max}$ ···· 弹性座屈

断面判定式の提案

問題点:

AASHTO式は2軸対称の鋼桁の判定式を合成桁に適用 前死荷重の影響が考慮されていない

研究方法:

- 非線形FEMによるパラメトリック解析
- 鋼桁:Mises降伏条件,関連流れ則,ひずみ硬化,残留応力 コンクリート:分布ひび割れモデル,固定ひび割れ, 鉄筋埋め込み要素

Gupta, V. et al, (2006). Development of web slenderness limits for composite I-girders accounting for initial bending moment. Structural Engineering / Earthquake Engineering. 23. 10.2208/jsceseee.23.229s.

コンパクト断面判定式の提案

終局時のひずみ分布

RC床版圧壊時の曲げ耐力

合成桁の曲げ耐力の実験:塑性中立軸床版内

塑性中立軸床版内 床版上側は圧壊 床版下側は引張クラック

全塑性モーメントに達することを確認

せん断耐力,曲げとせん断の相関

稲葉他, 合成I桁の曲げ, せん断相関強度解明に関する実験的研究, 土木学会論文集 A, 2010, 66 巻, 2 号, p. 393-405

せん断耐力試験

せん断試験

試験後の供試体 斜め張力場が発生

せん断座屈による斜め張力場

2000 1607kN 1500 1358kN 903kN 1000 **—**● D-3 500 ・せん断耐力(Basler) せん断弾性座屈荷重 0 0 15 20 -5 5 10

面外変位δw(mm)

使用限界:腹板弾性座屈式 終局限界:Basler式

せん断耐力の比較

曲げとせん断の相関

相乗効果での低減なしか, 4乗則で安全側の評価可能

国内LSD設計例/金谷郷高架橋(2012)

金谷郷高架橋の設計条件

<u> </u>	旧道示	金谷郷高架橋に使用した	
エな頃日	(許容応力度設計法)	限界状態設計法	
荷重(作用)	D (使用限界状態 D+L	
		終局限界状態 1.3D+2.0L	
耐力(抵抗)		使用限界状態	
		σ_y (降伏応力度)/1.15	
	σ _y /1.7(許容応力度)	弾性座屈強度/1.15	
		終局限界状態	
		Mu(終局モーメント)	
設 計	弾性設計	終局時は弾塑性設計	

正曲げ区間:コンパクト断面(合成断面) 負曲げ区間:ノンコンパクト断面(鉄筋+鋼桁断面)

金谷郷高架橋のコンパクト断面

佐々木:コンパクト断面設計を採用した鋼連続合成桁橋, https://www.jasbc.or.jp/images/imageparts/title/release/ronbun/2012/H24_02.pdf

稲葉尚文:鋼・コンクリート2重合成I桁橋の実用化に向けた研究,埼玉大学博士論文

2重合成桁:スペインでの事例

Calzon et al., Viaduct over the Nalon River in Spain, Steel Construction, 2, 2009

中間支点上:2重合成桁

Fig. 5. Hogging bending moment zone with double composite action

中間支点とメインスパン

Fig. 15. View of the rigid connection between main pier and steel deck

二重合成桁の実験

上下逆で載荷

稲葉他,2重合成I桁の 曲げ及びせん断強度の 評価方法に関する実験 的研究, 土木学会論文集 A,2010,66巻,1号,p. 117-132,2010

200

2重合成桁:曲げ実験

断面はコンパクト断面

終局モーメント<全塑性モーメント →圧縮床版の圧壊

二重合成桁の圧壊時の曲げ強度式

Ductility

して、DPを上記のように定我すれ 提案式で2重合成も適用可能

二重合成桁せん断耐力実験

ひずみゲージ

試験終了後の供試体 斜め張力場が形成されている

注記:上下逆転して載荷

実験結果と強度評価式

(せん断耐力)=Q₁+Q₂

Q₁=Basler式 (斜め張力場) Q₂=せん断降伏強度

二重合成桁の試設計

二重合成桁のメリット:橋梁全長にわたってコンパクト断面可能

Case Study 1: スパン長=60m

許容応力度設計法(旧道示)と 限界状態設計法との比較を実施

想定断面

Side View

許容応力度設計法による断面サイズ

許容応力度設計法(旧道示)の結果

中間支点断面も通常合成桁の ひび割れ制御設計

	Span Center	Intermediate Support
U Flg.	580x27 (SM490Y)	580x54 (SM570)
Web	2933x20 (SM490Y)	2902x27 (SM570)
L Flg.	840x40 (SM490Y)	840x44 (SM570)
Steel weight A (t/m)	1.694	2.302

限界状態設計法による設計と経済性の比較

(中間支点)

二重合成断面

	Span Center	Intermediate Support
U Flg.	550x17 (SM490Y)	550x46 (SM570)
Web	2455x18 (SM490Y)	2429x23 (SM570)
L Flg.	800x28 (SM490Y)	800x25 (SM570)
Steel weight B (t/m)	1.192	1.588
Ratio B/A	0.704	0.690

⇒ 30% 低減

Case Study 2 (スパン長 =133m)

側面図

許容応力度設計法による断面サイズ

	Span Center	Intermediate Support
U Flg.	1000x39 (SM570)	1000x100 (SM570-H)
Web	2895x25 (SM570)	4905x30 (SM570)
L Flg.	1000x66 (SM570-H)	1000x95 (SM570-H)
Steel weight A (t/m)	4.18	7.99

限界状態設計法による設計と経済性の比較

限界状態設計法による断面

	Span Center	Intermediate Support
U Flg.	1 0 0 0 x30 (SM570)	1000x47 (BHS500)
Web	2930x18 (BHS500)	4923x24 (BHS500)
L Flg.	1000x40 (SM570)	1000x30 (BHS500)
Steel weight B (t/m)	2.89	4.60
Ratio B/A	0.69	0.58

PCa床版ひび割れ制御

大城他:プレキャスト床版連続合成桁の曲げひび割れ幅に関する実験,構造工学論文集, Vol. 56A, pp. 1027-1040, 2010

プレキャスト床版の連続合成桁の検討

- Panel-to-panel joint (looped connection)
- Shear connector blackout
- Stud arrangement

PCaパネル間の継ぎ手 (ループ継ぎ手)

負曲げ部のひび割れ幅の検討

ひび割れ図: C-2 供試体 (PCa)

ひび割れ間隔=ジョイント幅

ひび割れ幅の計算

- Crack state
 - 初期ひびわれ状態
 - 安定ひび割れ状態
 - コンクリート床版の収縮による初期引張力 (N_ε)

B-2供試体(場所打ちコンクリート)

<u>B-2</u>

床版がUFCに変わると既往の研究が適用できない場合がある。

例えば

- •正曲げ合成桁のコンクリート圧壊時の強度式
- ・UFC連続合成桁負曲げ部分の設計法
- •ひび割れ幅(パネル見開き)の算定方法
- 負曲げ作用状態での床版疲労強度
- ・限界状態設計法でのUFC合成桁の最適桁高
- ・2重合成桁の最適断面

Analysis of crack width with FE model

- FE program: FINAL
- Crack of concrete: smeared crack model
- Shrinkage considered as initial strain

